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A LAYERED COMPOSITE WITH A
BROKEN LAMINATEfY

G. D. Gupra

Lehigh University, Bethlehem, Pennsylvania 18015, U.S.A.

Abstract—The problem of a laminate composite in presence of a crack located normal to the bond lines is con-
sidered. Stress analysis of the limiting case when the crack extends to the bond lines is carried out. Integral
transform technique is used to formulate the problem in terms of a singular integral equation from which the
power of stress singularity around the crack tip terminating at the interface is obtained. The singular integral
equation is solved numericaily and the effect of material properties on the stress intensity factor is calculated.

INTRODUCTION

THE problem of a laminate composite with a crack normal to the interfaces was studied
by Hilton and Sih [1]. The composite geometry in [1] consisted of a cracked layer bonded
between two half-planes of different elastic properties. This is an idealization of a many-
layered composite where one concentrates on a single layer and approximates the effect
of outer layers by prescribing some average elastic properties to the half-planes.

The aim of this study is to reconsider the same probiem and analyze the case when the
crack has propagated through the layer and is just touching the interfaces. The limiting
cases when the matrix is rigid or has zero modulus of rigidity correspond to that of a
semi-infinite strip with constrained or free sides respectively. The method of solution uses
the displacement expressions derived by Sneddon {2] where the problem of an infinite
strip with a central crack normal to the strip boundaries is solved. Using this integral
transform technique, first a crack problem will be formulated in terms of dual integral
equations which will then be reduced to give a singular integral equation. This standard
technique has been previously used by Erdogan and Gupta in various papers concerning
crack problems [3-5] in composite structures. For the case of a crack away from the
interface, the only singular kernel appearing in the integral equation is a Cauchy kernel.
Hilton and Sih {1] have treated this problem using the technique followed by Sneddon [2],
where it is possible to reduce the problem to a Fredholm equation of second kind. This
method, however, is not applicable when the crack extends to the interface. The singular
integral equation in that case will be shown to contain a set of generalized Cauchy kernels
also. The final integral equation is then solved by using Gauss—Jacobi integration tech-
nique [6, 7]. The effect of material properties on the stress intensity factor at the crack
tip is presented both graphically and in tabular form.

Recently the same problem has been considered by Ash baugh [8]. The formulation of
the problem in [8] is similar to that given here. A singular differential-integral equation is
finally obtained, which is numerically solved by expanding the unknown function in terms
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1142 G. D. Gupta

of an infinite series of ultra-spherical polynomials multiplied by their weighting function.
The procedure, though extremely cumbersome, nevertheless gives satisfactory results.
The results obtained in [8] will be compared with those in this paper.

FORMULATION OF PROBLEM

Consider a laminate composite in plane strain conditions consisting of a single layer
of width 2h, shear modulus pu, and Poisson’s ratio v, bonded to two half-planes having
shear modulus and Poisson’s ratio as u, and v,, respectively (Fig. 1). A crack of length
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Fi1G. 1. Geometry of the laminate composite.
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2a(a < h)is located centrally along the x-axis. Only the symmetric problem will be solved
in this paper. The skew-symmetric case can be treated in an identical manner. Subscripts
or superscripts 1 and 2 will be used to refer to the layer and the half-planes, respectively.
Considering symmetric normal tractions on the crack surface being the only loads [1],
we have the following boundary and continuity conditions.
Continuity conditions at x = h

uy(h, y) = u,(h, y): vy(h, y) = vy(h, y)
orh y) =6l (hy): ol y) = clih y).

Homogeneous conditions at y = 0

oa(x,0) =0, Ix] < h; 02,4x,0) = 0, x| > h

vy(x,0) = 0, Ix| > h.
Mixed boundary conditionsat y = 0

0,(x,0) = —p(x), Ixl < a

v,{x,0) =0, a<lxl <h
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The displacement field for the layer as derived by Sneddon [2] is a superposition of

well-known transform solutions [3] for a body with x = 0 and y = 0 as planes of sym-
metry and an upper half-plane symmetrical about the y-axis. It may be expressed as

2 (> .
uy(x, y) = —;J’ { [f; ]sxnh(nx)+xg1<ﬂ) cosh(qx)} cosh ny dn

—~f 9.6 ("’ Cy) -8 gin £x d¢

2
vy(x, ) = - J- { [:fx(’?)-f“
0
2

gi(n)} cosh(nx)+ xg,(n) smh{nx)} sin 7y dn

¢1(€)(h1; 1 + éy) e~ cos £x d;’:
where ,
K = 3—4v,.
The corresponding stress field is given by the equations
XZ(: Y _ '“"J. [ f1(n) cosh(nx)+nxg,(n) sinh(nx)] cos ny dn
b3
- f & (E(1—Ey)e ¥ cos Ex dé
oy;(;____y_ f {Lfi(n)+2g,(n)] cosh(nx) +nxg,(n) sinh(nx)} cosnydn  (5)
1
[ 600 +epe v cosexas
0
on(xy 2%, , ,
2%, n fo {[f1(n)+ g, (n)] sinh(nx) +#xg, (1) cosh(nx)} sin 7y dy

[ oou@esingxas

Condition ¢},(x, 0) = 0 is identically satisfied by this representation.
Similarly, displacement and stress fields for the half-plane can be expressed as

2 o
uy(x, y) = Efo { [fz( )+

gz(rz)] +xg2(n)} e " cosnydn

(6)
2 x
vy(x, ) = ;J.O { [fz(’?)‘“ gz(’?)} +xgz(*?)} e "™ sinnydn
a,;'(x A2 J‘ [fa(m)+nxg,(n)]e™" cos ny dn
H3
2 o0
ﬁi—x’yz = - f (o) +(nx—2)g,(m)]e™ ™ cos ny dn 7
H3 TJo
2 o«
w =2 f [f2(m) +(nx —1)g,(n)] €™ ™ sin ny dn.
<Ha nJo
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Again this representation identically satisfies the homogeneous boundary conditions (2).
The unknowns f}, g,, f3, g, and ¢, will be solved by using four continuity conditions
(1) and the mixed boundary conditions (3). Continuity conditions (1) may be written as

o

— 1 . i
)82('7)} e = - [fl(n)—x‘z gl(rl)] sinh(nh) —nhg,(n) cosh(nh)

2n (* $4(8) 1 —3 N
—ﬂf (éz_:_qz)z[zﬂz*'hz (’12+c2)} sin ¢h d¢

[fz(n) K2j1~nh)gz(n)Je""‘— [fx(") 3 gl(n)] cosh(nh) + nhg,(n) sinh(nh)
2'7 @,(%) 2 kK +1 2 2
RJ 5(52”)[25 F (¢ )]coséhdé "

) ‘ 4 2 o0
%[fz("l)'*"?hgz(ﬂ)] e™™ = f,(n) cosh(nh)+ nhg,(n) sinh(nh) + — Z éd) Q)) os (hdé
1

—f—f[fz(nmnh— Dgs(mle™™ = [f,(n) +g,(n)] sinh(zh)

® £¢,(%)
o E+n??

Mixed boundary conditions (3) can be expressed as

+nhg,(n )Cosh(ﬂh)—* sin £h dé.

L(x,0 2
e~ tim —2 4,01+ &) e cos Exdz+2 [ (LA + 26,0n)] coshin
1 y—'
+nxg,(n) sinh(nx)} dn = ——%). x| < a (9)
“ptl
a”‘( 0) = — "‘“Zf 6,(&)sinéxdé =0, a<|x <h (10)

Note that in (10) the boundary condition for displacement derivative instead of displace-
ment* is used. This is done to have same dimensions of the equations (9) and (10).

In order to reduce the dual integral equations (9) and (10) to a singular integral equation,
we define a new unknown function G(x) as follows.

%(x, 0) = G(x), x| < h. (11)
Ox

From (10), it is clear that G(x) = 0 for a < |x| < h. Inverting (10) and using (11), we obtain

= r G(t) sin Er de. (12)
]

* Displacement v, is half the crack opening displacement.
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From (8), eliminating f, and g,, we find

fl('l)(": +%2') e"h+gl(ﬂ)[("2+5-2)’lh e"h'*"(z Sinh('ih)‘f'—‘;: (e"h‘*"‘l e-"h):‘ = E,(n)
1 1 1
(13)

f,(q)(‘i-1) e"’"+g1(11)|:sinh(nh)~—(I—‘l—-l)r]h e~y B2 e""+e"’")] = E,(n)
iy Hy Hy
where
E,(n) = —‘f[m(n)wmn—x;[DM)-D;(n)]
’ (14)
E,(n) = [Ds('l) D(m]+[Dy(m)+ D,(n)]
and
4 w
D,(n) = i (éd) 2y 08 Ehdé
D,(n) = (gz 9 (f)z sin Eh d¢
) o \ (15)
Dyln) = = f (éf’ +‘§l)2[2n2+ﬁ2"—(n2+52)} sin ¢hd¢
2 ®©
D,n) = i acd:fn)z){ 52+K1;1(n2+€2):| cos Chdé

(13) must now be solved for f; and g, and substituted in (9) to obtain an integral equation
in ¢, , or, by using (12), for G(x). Combining (12) with the first integral of (9), a simple Cauchy
kernel is obtained [3-4]. Second integral in (9) would involve integrals in (15) which,
when combined with (12), give the following results.

(162 + 1)Dy(n) = f " Glomh—1) e~ i

(s +10Dstn) = | GO0t —0-17e™ -0
_”a ) (16)
(k1 +1)Ds(n) = —f G(t)[:n(h—r)-;-__h‘z_l] e Mh=0 dy

(ke + 1)Dyln) = f G(z)[n(h-t)—"’l—;—l] e"’"’"’dt+Jw G(t) dt

-a

G(t) being an odd function in t makes the second term in D(y) vanish. The details of above
reduction may be found in Appendix A.
Using (16), the singular integral equation from (9) can be expressed as

f —G—(E—dt+f GOK(t, x)dr = —PRFK) =g (17)
—al— 4#1
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where

K(t, x) = f K, x, 7)€ """ dn
0

e ™ '
X, = TA
Kt xm) = g o= =g w1 coshin)
{1 =4,(3+2nh)e™ 2™} —2nxi, 4, sinh{nx) e~ *™

+ Ay {1 =2n(h—1)} {cosh(nx)(3 —2nh— i, e~ *™)+ 25x sinh(nx)}]

(18)
- K1y =Kol
Ay = ————
Ha + Kol
b= BaTh
My T K U

Kernel K(t, x) is a Fredholm’s kernel for @ < h as it is bounded for all values of ¢ and
x in(—a,a)is a < h. The singular integral equation (17) is equivalent to the final Fredhoim
equation obtained in [1]. The present formulation of the problem in terms of a singular
integral equation has various advantages. A very simple numerical method is available
to solve the equation [6]. However, the most important advantage of the procedure is
that the case when a = h can be studied very effectively. The integral equation (17) must
be solved subject to the following single-valuedness condition.

JW G(t)dt = 0. (19)

The caseof a=h

Referring to Fig. 1, when the crack extends to the interfaces (case of a broken laminate),
the Fredholm kernel K(¢, x) in (17) is no longer bounded and contains point singularities
att = hand x = +h. To extract these singularities, we need to study the infinite integral
in the expression for K(z, x). It turns out that the asymptotic value of the integrand
k(t, x, n) as n — co gives rise to these singularities. The part of the kernel contributing these
singularities may be expressed as

K(t,x) = f ko (t, x, n) e~ 1=9 dy (20)
0

where, from (18), &, is found to be
k(t, x, 1) = e ™[4, cosh(nx)+ A,{1 —2n(h—1)}
{(3 —2nh) cosh(nx)+ 2nx sinh(yx)}]. (21)
Using the following result [9]

fwn’"e_mh_‘){sinh(ﬂx)} dn = d_: J-w e-M2h=0 sinh(ryx)} dn
0 cosh(nx) dt™ Jo cosh(rx)

dam 1 x
= d_f?[(zh—r)2 —xZ {2;._ ,}] (22)
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the singular kernel K {t, x) may be written as
2h —‘t + 2/12
Rh—tP —x* [(2h—1)* —x?)?
+4(h —1){(2h—1)*(2h* — ht — 3x?) + x*(6h* — 3ht — x?)}
{Qh—1)? = x?} '

To analyze the behavior of the unknown function G(z) near the end points, we must con-
sider the dominant part of the singular integral equation which can be expressed as

Kt x) = (A, +323)

[xzt —(2h—1)*(4h—31)

(23)

lr G(t) ! +1 45 ,(h+ x)* d” + 124 (h+x)i Ay+37 _
nJ_, t—x 2| 2 dx? 2 dx VTN i—(2h+x)
1. , d? d . . 1
+'2“ {4;‘»2“1 —x) a-;i—’ lz(h—X)a-;*'Ax +3/~2} m:’ dt
_ _Px)(+Ky)

s IXl<h (24)

4p,

G(t) is now assumed to have an integrable singularity at t = +h which can be expressed
as [10]

H() H(t)e™

Gt = = h 25

0=~ owesmyr M7 (23)

where 0 < Re(y) < 1 and H(t) satisfies a Holder condition in the closed interval ~h <t < h,

Technique of determining y requires studying (24) near ¢t = +h [10, Chapter 4] and has

been treated in detail in [5], [7] and [11]. Consider the following sectionally holomorphic

function
1[G, 1" H@peVd
¢(Z)-;£ht———2_dt_;J-h(t—h)y(t+h)7(t—z)' (26)

According to ([10], Chapter 4)
H(-h) e 1 Hp 1
(2hy sinmy (z+h) (2hysinwy (z—h)

where ¢(z) is bounded everywhere except at the end points =+ h where it has the following
behavior

(z) =

+¢ol2) (27)

Hy(+h)

19a(2) < e

Re(yo) < Re(y). (28)

To consider (24} we need to reduce (27) for z = x, 2h+ x and 2h— x, obtaining
H(-h) cotny H(h) cotmy

O = " ey @k ey T W<
. B H(h) 1
¢2h+x) = @ s (k+x)y+¢’;‘(x), h<2h+x < 3h (29)
$(2h~x) = Hk) ! +¢¥(x), h<2h-x < 3h

- (2h)' sin ny (h—x)’
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Substituting (29) into (24) we obtain
1
(2hY sin ny{h + x)’
_H®)
(2h)" sin my(h - x)’

H(h
[H(«—h) cos ny-——;—-l{uzy(y-e- D—124,y—4, +3/12}]

[cos my +3{4A,7(y + =124,y — 4, +34,}] = P(x) (30)

where P(x) contains all the bounded functions.

Noting that for this solution of a symmetric problem G(z} is an odd function, hence,
Hit) is odd, i.e. H(t) = — H(—1), muitiplying {30) by (h+ x)” and substituting x = —hand
then multiplying it by (h—x)” and substituting x = h, we obtain the following character-
istic equation for the determination of y:

2cos Ty +4A,(y— 17 — (i, +4,) = 0. (31)

The equation is identical to the one obtained in [{1]. The root of (31} satisfying
0 < Re(y) < 1 turns out to be a real constant for any material combination. If a < h in
Fig. 1, the only singular kernel will be the Cauchy kernel 1/(t—x). In that case, above
analysis gives the characteristic equation as

(S

(32)

which is the well-known singularity at the crack tip in a homogeneous material away
from any boundaries. Singular integral equation (17) now takes the following form.

cotmy =0, v =

r ———-—dH—J G(K (t, t)dt+J G(OK (1, x) dt

_ (1 +xy)
4u,

Kf(t, x) = J' [k([, X, y’)_kw(t’ X, r,)] e'ﬂ(h—r) dr]
0

, x| <a, a<h (33)

K (¢, x) given by (23) is a Fredholm’s kernel for a < h and becomes singular for a = h.
k{t, x, n) and k (¢, x, n) are given by equations (18) and (21) respectively and are such that
K{t, x) is a Fredholm’s kernel for a < h.

Solution of the integral equation

To solve (33), we first normalize the dimensions with respect to g, by introducing the
following transformations

r=1 =X a=9
 YTw ° " h (34)
G(t) = Glat) = ¢(z),  p(x) = play) = s(y).
Hence (32) can be expressed as
J. ¢(t)[ +aK (at, ay}+aK {ar, ay)] dr = ﬂ%(—;—%’fl—),
1
M<l, 2=a5 <1 (35)

h
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As indicated in the previous section, we can express ¢(t) as

B = T (36)

where y is given by (32) if a; < 1 and by (31)if @, = 1.(35) can be solved quite conveniently
for a, < 1 by using the method developed in [6]. The method may be extended for g, = 1
as described in [5, 7, 11], where the Gauss~Jacobi integration formulas are used. Thus,
(35) may be approximated by

_ syl +xy)

37
4u, 37

Z Aplr )[ = +a{K (ar;, ay)+ K a1, ay;)}}

i=1

where
Pir™t)=0, (j=1,...,N)
PYZp' ) =0, (i=1...,N-1)

and A4;’s are the corresponding weighting constants [5]. This provides us with N —1 linear
algebraic equations for N unknowns (1)), j = 1,..., N. The additional equation is ob-
tained by using the single valuedness condition (19):

N
Y Ap(t) =0 (38)
j=1

¥(r;) are numerically evaluated from (37) and (38). We have the derivative of the crack
surface displacement (11) as

a”‘(x,m Glx) = (‘fﬂ% x| <a a<h (39)
where
H(x) = w(g)

Using the most common definition of the stress intensity factor as being the strength of
the stress singularity ahead of the crack, we can write for the crack tip x = a as

K = lim \/2(x — a)'c2(x, 0). (40)

It can be shown [11] that
lim o%(x,0)= —2u* lim (x 0) 4n

x=a,(x>a) x=—a,(x<a) 8
where
= a<h
T+x,’

42)

_ b [1+2&1(1 “")’)+1"2)~1(1“"Y)] 4 h
sinmy|  py+x,4, Ha+ Kyl
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Hence the stress intensity factor K can be expressed as

a\’ i

K= —2u*(2)'\/(2>H(a) = —2\/(2»:*(2) w(1), (43)

NUMERICAL RESULTS AND DISCUSSION

The numerical resuits are obtained for a uniform pressure distribution on the crack
surface. Also, since the case of a < h has been treated previously* [1], results only for
a = h are presented. Thus the input function is

0')1,).(X, 0) = —plx) = —po, |x| < h. (44)

Figures 2 and 3 show the variation of the stress intensity factor with respect to the
ratio of matrix-to-layer shear moduli u,/u, for different Poisson’s ratio combinations.
These results are also presented in Table 1. From this table and Figs. 2 and 3, it is seen
that the stress intensity factor ratio K/pyh’ decreases with a decrease in y,/u, . This value
as y,/u, — oo corresponds to the semi-infinite strip fixed along x = + h, where the power
of stress singularity and the stress intensity factor depend only on Poisson’s ratio of the
layer. As u,/u, decreases, the power y of the stress singularity increases, reaching a maxi-
mum when u,/u, = 0(i.e. when the layer is rigid). In this case, a non-integrable singularity

8l
Mgz o°
T3 — ——— e —
7r
ah
sk
Y202

4 10
Pa/p
F1G. 2. Stress intensity factor vs. u,/u,. Layer Poisson’s ratio = 0.2.

* Since a different method of solution was used in [1], spot check of a few points was made using the method
presented here. The results were in good agreement with those in {1].
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ozh
=035

[e] A i 1 a 1 . i . AL
[o] 2 _4 [) 8 10

K 2/ M
F1G. 3. Stress intensity factor vs. ,/u, . Layer Poisson’s ratio = 0-35.

y = 1 is obtained. Effect of Poisson’s ratio on the stress intensity factor is also well de-
picted by these graphs and Table 1. Keeping the same Poisson’s ratio for the layer and
increasing it for the matrix, increases the stress intensity factor. A reverse effect is noted if
we increase the Poisson’s ratio of the layer and keep the matrix unchanged.

Table 1 also gives the results obtained by Ashbaugh [8] for v, = v, = {1 and varying
U2/iy . The numerical values may have some error since these are taken from the graphs
provided in (8]. However, the results obtained by both methods are remarkably close. It
is difficult to conclude which method gives more accurate results since both methods use
numerical approximations. The main advantage of the method used in this paper is that
the singular integral equation (33) can be solved assuming as if it were a Fredholm equation
and a simple Gauss-Jacobi integration technique described in [7] yields good results.

Figure 4 shows the crack surface displacement for two sets of material combinations.
The left ordinate scale corresponds to Epoxy—Aluminum combination. When the crack
lies in epoxy layer, we observe much larger crack surface displacement in the center of
the crack than when the aluminum layer contains the crack. Right ordinate scale cor-
responds to Aluminum-Steel combination in which the displacements are one order of
magnitude smaller than Epoxy-Aluminum combination.

TABLE |. STRESS INTENSITY FACTOR K/poh’

Results of
v, = 02 v, =035
#2 Ref. [8]
Hr vy = 02 vy = 035 vy =02 vy, = 035 v, =v; =1
0-1 0-249 0-289 0.228 0-258 0-28
0-5 0-644 0-836 0-542 0-683 0-70
1.0 1.000 1-343 0-789 1.000 1.00
2:0 1611 2-128 1.122 1-408 1-44
50 2.881 3.587 1.657 1-.945 1.96
100 4.084 4.769 2:042 2:266 —
30-0 5.757 6-183 2-460 2572 —_

o 7-332 7-332 2-831 2831 290
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3.0 }_Epoxy' Atuminum
1. Epoxy .= crocked layer
2. Al 2.z outer motrix
25
Aluminum -Steei
20} Ho20
} 15 -0-15
=
K . Al-
o 10 2. Steel o010
=
o5 I. Steel 005
2. A
00 ! 1 e A A 00
0-0 02 04 06 08 10

x/h

FiG. 4. Crack surface displacement for different material combinations.

Stress fields in both materials can be quite easily computed by using appropriate
equations. Stresses in the neighborhood of the crack tip in such a case have been presented
in [11]. Another question of interest is that if loads are increased, would the crack tend to
propagate into the material 2, would it reflect back in 1 at some angle, or would debonding
take place along the interface. A fracture criterion based on the “‘maximum stress” concept
has been proposed in [11] and can very well be applied here. Validity of this criterion (or
any other criterion) would have to be established by experimental studies.

REFERENCES

{1]) P. D. Hton and G. C. SiN, A laminate composite with a crack normal to the interfaces. Ins. J. Solids
Struct. 7.913 (1971).

{2] I. N. SNEDDON and M. LOWENGRUB, Crack Problems in the Classical Theory of Elasticity. pp. 62-72. John
Wiley (1969).

{3] F. ERDOGAN and G. D. Gupra, The stress analysis of multi-layered composites with a flaw. Int. J. Solids
Struct. 7, 39 (1971).

[4] F. ERDOGAN and G. D. GupTa, Layered composites with an interface flaw. Init. J. Solids Struct. 7, 1089
(1971).

(5] F. ErRDOGAN and G. D. GupTa, The torsion problem of a disk bonded to a dissimilar shaft. Ini. J. Solids
Struct. 8,93 (1972).

(6] F. ERDOGAN and G. D. GupTA, On the numerical solution of singular integral equations. Quart. appl. Math.
525 (1972).

[71 F. ERDOGAN, G. D. GuPTA, T. S. Cook, The Numerical Solutions of Singular Integral Equations, Methods
of Analysis and Solutions to Crack Problems, edited by G. C. StH. Noordhoff (1972).

(81 N. E. ASHBAUGH, Stresses in Laminated Composites Containing a Broken Layer. ASME Paper No.
72-WA/APM-14,



A layered composite with a broken laminate 1153

[9] A. ERDELYL, Tables of Integral Transforms. Vol. 1. McGraw-Hill (1953).
{10] N. I. MUSKHELISHVILL, Singular Integral Equations. Noordhoff (1953).

[11] T.S. Cook and F. ERDOGAN, Stresses in bonded materials with a crack perpendicular to the interface, /nt.
J. Engng Sci., to be published (1973).

APPENDIX A

Consider the integrals given in (15). Substituting from (12) and changing the order of
integration we obtain

0
2
(k,+1)D,(n) = _2f () 4nf f(S;rzlf_hnsmﬁt a
(A-1)
2n K, —3

2n 1 . .
(x,+1)D3(n) = -2.[ G(t)dt7t . |:(fZ+'72)2+ > éz+n2]sm§hsmétd£

2 11 .
(e, + 1)Dyln) = =2 fo G(t)dt—:— fo [(ézfnz)ﬁxl; g(cunz)] cos Eh sin &t dE.

Using the properties of trigonometric functions and the fact that G(z) is an odd function,
the integrals can be reduced to the fol]owing form.

® &siné(h—1)
n Jo (EP+n?)?

52cos¢(h—t

217.[' 2n kK, —3 1
1)D -
(ky+1) f G(t 7 ) [(52+712)2+ 7 §2+ﬂ2] cos {(h—1t)d&

2¢ K, +1 1 .
(k,+1)D,(n) f Gy d - L [(52+ﬂ2)2+ > 5(62+n2):|s1n§(h—t)dé.

From the tables of Fourier Transform in [9] we have

(x;+1)Dyn = f Gt)dt dé

(A-2)

n
j 5(52 sm Eydé = pr s(l—e™™) (A-3)

f _F
f T 2)251nCyd.'§-- nye C (A-4)

Therefore, by appropriate differentiation on both sides, we obtain

—ThY
J 52 zcosfydé = ne

.4
T————cos dé = —(1—ny)e™ (A-5)
fo (& +n)? o an )

2

n . n —uy
—s——s—scosydé = —(1+ny)e™".
J, s eras = guat4m)
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Using (A-3)—(A-5) with y = h—t in equations (A-2), we obtain the desired result in
(16) as

(xy+ 1Dy (1) =Jw G{tin(h—rt)e M=o dy

(k, +1)Dy(n) = J.a G(t)[nh—t)—1]e ™0 dy

a 1 (A-6)
(c,+ 0D3tn) = = | G(z)[,,(h_t)wz- Je-m-nd[

(1, + )D4(n) = f G(t)[n(h——t)——xlTH]e"’"‘"’dt-lr'r G(t) dt.

(Received 11 December 1972)

AGcrpakT—Hccnenyerca 3anadya COCTABHbIX CIIOMCTbIX [UIACTHKOB, MPH HAMYHM TPELHHbL, PACMONONKEH-
HOH HOPMANbHO K NHHHMAM CLCNICHHA. JacTCA BbIBOJ aHAIM3A HAMPAKCHHH WA MPEACABHOTO Cay4as,
KOra TPCliMHA PACMPOCTPAHACTCH K NHHHAM cuericHUA. IIpUMEHAETCA METOA HHTErpanbHOro npeob-
pa3oBaHKs, B UEAbIO QOPMYMPOBKH 3242YyH, BbIPAXCHHON CHHTYIADHBIM UHTErPAnbHBIM YPaBHCHHEM.
M3 3T0ro ypaBHeHHs MOSyYaeTca CTeneHh OCOBEHHOCTH HANDPKEHHA BOKPYr KOHUAR TPELUHHBI, TIPHCOe-
AHHEHHOH K TMOBEPXHOCTAM paigesa. PelwaeTcs YHCNEHHO CHHIYIAPHOE HHTErPANbHOC YDABHEHHE.
MoacunteBae1ca 3pPekT CBOACTE MaTepUana, B 3aBHCHMOCTH OT GakToOpa MHTEHCHBHOCTH HAMPAKEHUH.



